University of North Georgia Department of Mathematics

Instructor: Berhanu Kidane

Course: College Algebra Math 1111

Text Book: For this course we use the free e – book by Stitz and Zeager with link: http://www.stitz-zeager.com/szca07042013.pdf

Tutorials and Practice Exercises

- http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/index.htm
- http://www.mathwarehouse.com/algebra/
- http://www.ixl.com/math/algebra-2
- http://www.ixl.com/math/precalculus
- http://www.ltcconline.net/greenl/java/index.html

For more free supportive educational resources consult the syllabus

Chapter 4 Rational Functions (page 301)

4.1 Rational Functions

Objectives: By the end of this section students should be able to:

- Define a rational function and give example
- Identify vertical, horizontal and oblique asymptotes
- Find vertical Horizontal and oblique asymptotes
- Sketch graphs of rational functions
- Solve application problems

Rational Function and Asymptotes

Definition: A function f defined by $f(x) = \frac{p(x)}{q(x)}$, where $q(x) \neq 0$, p(x) and q(x) are polynomials is called a rational function.

Definition: (Domain) **The Domain** of a rational function f is set of all **inputs** x for which $q(x) \neq 0$. That is **Domain of** $f = \{x : q(x) \neq 0\}$ **Example 4.1.1:** Page 301 **Example:** Find the domain of: a) $f(x) = \frac{x+1}{x^2-4}$ b) $f(x) = \frac{x}{x^2-2}$ c) f(x) = 1/x

A simple Rational Function

Example 1: Graph the function $f(x) = \frac{1}{x}$ The function f is not defined at x = 0, so, the domain of $f = \{x : x \neq 0\}$

The following two tables show that when x is close to zero, |f(x)| gets large

Tab	le 1	Та	ble 2
x	f(x)	x	f(x)
-0.1	-10	0.1	10
-0.01	-100	0.01	100
-0.001	-1000	0.001	1000
-0.00001	-100000	0.00001	100000
Approaches 0 ⁻	Approaches to $-\infty$	Approaches 0 ⁺	Approaches to ∞

We describe this behavior as follows

The first Table $f(x) \to -\infty$ as $x \to 0^-$; The second Table $f(x) \to \infty$ as $x \to 0^+$

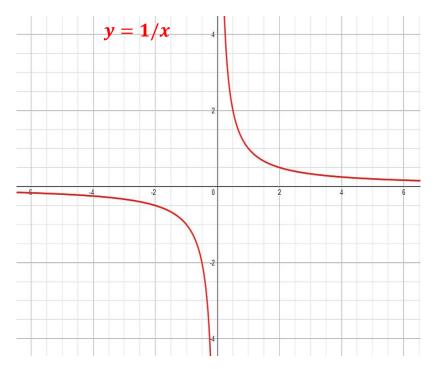
Table 1		Table 2	
<i>x</i>	f(x)	x	f(x)
-10	-0.1	10	0.1
-100	-0.01	100	0.01
-100000	-0.00001	100000	0.00001
Approaches $-\infty$	Approaches to 0	Approaches ∞	Approaches to 0

The next two tables shows how f(x) changes as |x| becomes large

The Tables shows that as |x| becomes large, the value of f(x) gets closer and closer to Zero That is:

 $f(x) \rightarrow 0$ as $x \rightarrow -\infty$ and $f(x) \rightarrow 0$ as $x \rightarrow -\infty$

Using the information in these Tables and plotting few additional points, we obtain the graph of y = 1/x as shown below



Example 2: Find the domain and sketch the graph using transformation properties on $f(x) = \frac{1}{x}$ a) $f(x) = \frac{2}{x-4}$ Answer $D = (-\infty, 4) \cup (4, \infty)$

b) $y = \frac{x+1}{x-2}$,

c)
$$y = \frac{1}{x+5}$$

Example 3: In each of the following, which values of x may not be included in the **domain**? That is, which values are the **singularities** of the function? What is the domain of the function?

a)
$$y = \frac{1}{2x + 1}$$

b) $y = \frac{1}{x^2 - 16}$
c) $f(x) = \frac{1}{x^2 + x - 6}$

Asymptotes of Rational Functions

We consider three types of asymptotes: Vertical, Horizontal, and Oblique or Slant Asymptotes

Symbol	Meaning
$x \rightarrow a^{-}$	<i>x</i> approaches <i>a</i> from the left
$x \rightarrow a^+$	<i>x</i> approaches <i>a</i> from the right
$x \to -\infty$	<i>x</i> goes to negative infinity ; <i>x</i> decreases without bound
$x \to \infty$	<i>x</i> goes to infinity ; <i>x</i> increases without bound

Arrow Notations:

Definition of Vertical and Horizontal Asymptotes

1. Vertical Asymptote (VA) is a vertical line; that is a line perpendicular to the x – axis. The line x = a is a Vertical Asymptote of the function y = f(x) if y approaches to $\pm \infty$ as x approaches a from the right or from the left

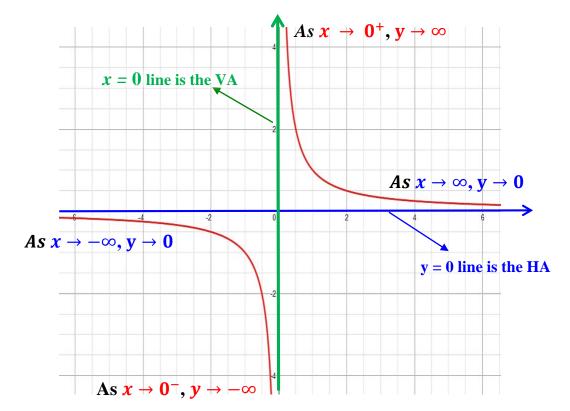
Using Arrow Notations

The line x = a is a Vertical Asymptote of the graph of a function y = f(x) if as $x \to a^-$ or as $x \to a^+$, either $f(x) \to \infty$ or $f(x) \to -\infty$

2. Horizontal Asymptote (HA) is a horizontal line; that is a line parallel to the y – axis The line y = b is a Horizontal Asymptote of the function y = f(x) if y approaches b as x approaches $\pm \infty$

Using Arrow Notations

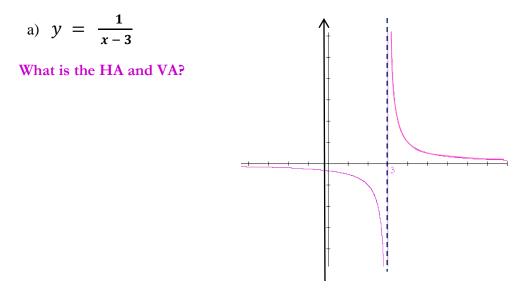
The line y = b is a Horizontal Asymptote of the graph of a function y = f(x) if as $x \to -\infty$ or as $x \to \infty$, $f(x) \to b$

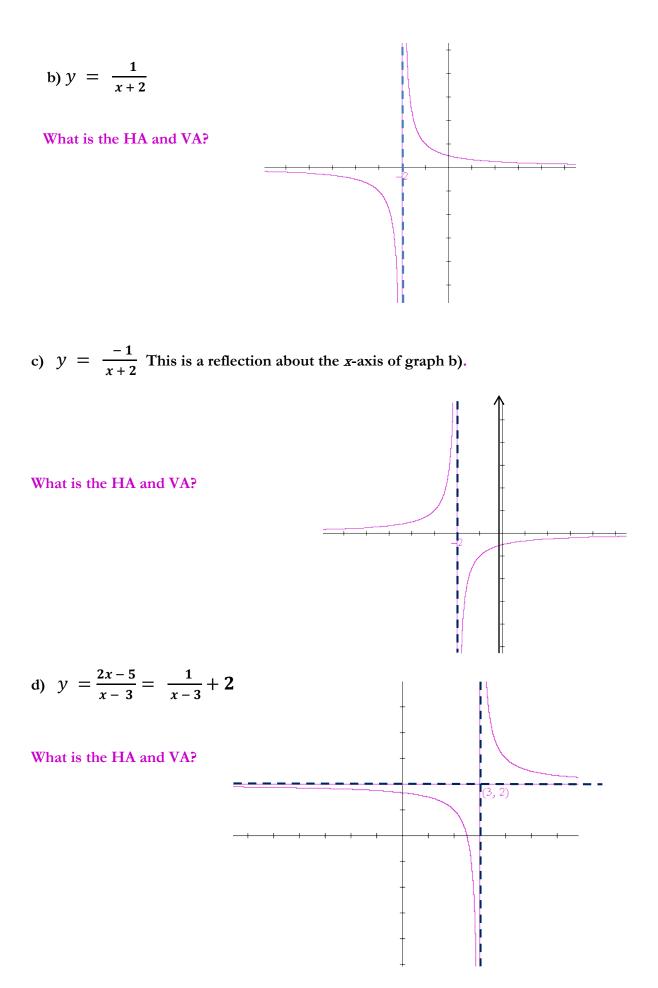


Example 4: Vertical and **Horizontal** Asymptotes for the graph of $y = \frac{1}{x}$, see fig below

Question 1: Where do we always find a vertical asymptote of a graph?At a singularityQuestion 2: What does the equation of a vertical line look like?x = A numberQuestion 3: What does the equation of a horizontal line look like?y = A number

Example 5: Each of the following graphs is a translation of the graph of $y = \frac{1}{x}$.





Example 4.1.2: Page 306 vertical and horizontal asymptotes

Example 4.1.3: Page 307

Example 4.1.4: Page 309 List the horizontal asymptotes,

Example 5: Write the equation of the **vertical** and **horizontal asymptote**(s) of each of the following.

a)
$$y = \frac{3x+4}{x+1}$$

b) $y = \frac{1}{2x+1}$
c) $y = \frac{1}{x^2-16}$
d) $f(x) = \frac{1}{x^2+x-6}$

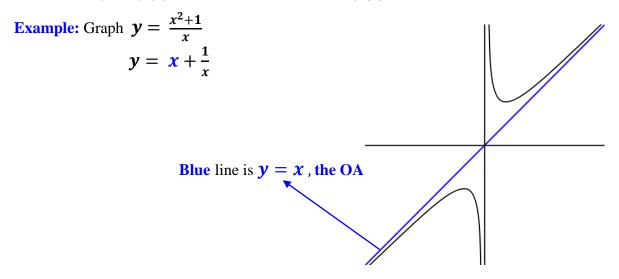
Oblique or Slant Asymptotes

3) **Definition** (Oblique or Slant Asymptote (OA))

When a linear asymptote is not parallel to the *x*- or *y*-axis, it is called an oblique asymptote or slant asymptote.

Using Arrow Notations

The line y = mx + b where $m \neq 0$ is called a slant or oblique asymptote of the graph of a function y = f(x) if as $x \to \infty$ or as $x \to -\infty$, $f(x) \to mx + b$.



Question 4: What does the equation of an **oblique line** look like? Ans. y = mx + b

Example 4.1.6: Page 312 Find the slant asymptotes

Example 6: Find the Oblique Asymptote: (Use long division to find the OA)

a)
$$f(x) = \frac{2x^2 - 3x - 1}{x - 2}$$
 b) $f(x) = \frac{5x^3}{x^2 - 9}$

Asymptotes Summary

Vertical Asymptote

First simplify the rational expression; then if *a* is a zero of the new denominator, then the line x = a is a vertical asymptote for the graph or the rational function.

Example 1: *Find the vertical asymptotes:*

a)
$$f(x) = \frac{2}{x-4}$$

b) $f(x) = \frac{5x}{x^2 - 9}$
c) $f(x) = \frac{x^2 - 16}{x-4} = \frac{(x-4)(x+4)}{(x-4)} = x+4, x \neq 4$ No vertical asymptote

Horizontal Asymptote

Let $f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \ldots + a_0}{b_k x^k + \ldots + b_0}$, **n** = degree of numerator, **k** = degree of denominator. Then:

Condition on degrees	Asymptote
n < k	y = 0 line is H.A.
$\mathbf{n} = \mathbf{k}$	$y = \frac{a_n}{b_k}$ line is the H.A

Example 2: Find the HA

a)
$$f(x) = \frac{2}{x-4}$$

b) $f(x) = \frac{2x^3 + 3x - 7}{3x^3 - 5x^2 + 3x}$

Oblique (or Slant) Asymptote

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \ldots + a_0}{b_k x^k + \ldots + b_0}$$
, $\mathbf{n} =$ degree o

of numerator, $\mathbf{k} =$ degree of denominator.

Then:

Condition on degrees	Asymptote	
n > k by exactly 1	y = Q(x), the quotient poly is O.A.	
$\mathbf{n} > \mathbf{k}$ by more than 1	no H.A. or O.A.	

Note: Graphs **can cross horizontal or oblique asymptotes, but** they **cannot cross vertical asymptotes!**

Example 3: Find the horizontal and/or oblique asymptotes:

a)
$$f(x) = \frac{5x}{x^2 - 9}$$

 $n = degree \ of \ numerator = 1$
 $k = degree \ of \ denominator = 2$

 $n < k \rightarrow$ Line y = 0 is the horizontal asymptote

b)
$$f(x) = \frac{5x^4 + 3x^2 + 2x - 8}{2x^2 + 2x - 8}$$

 $n = degree \ of \ numerator = 4$
 $k = degree \ of \ denominator = 2$
 $n > k + 1 \rightarrow No \ horizontal \ asymptote$
No oblique asymptote as well

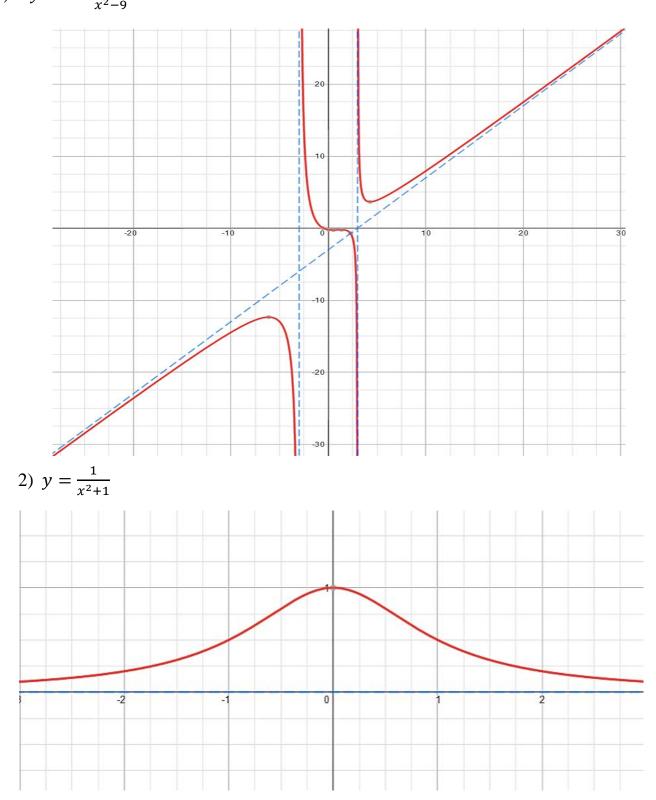
Example 4: For each of the following functions fill the table with the **correct asymptote(s) equation(s)**, otherwise write **none** if the function does not have the particular asymptote.

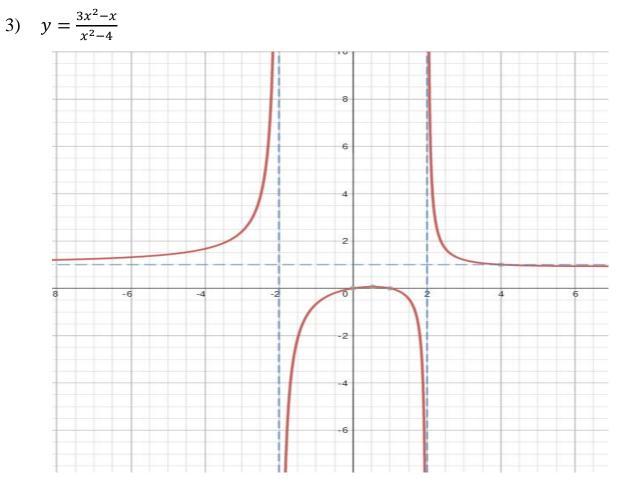
Functions	Vertical Asymptote(s)	Horizontal Asymptote	Oblique Asymptote
$f(x)=\frac{2}{x-4}$	x = 4 line	y = 0 line	None
$f(x) = \frac{3x^2 + 1}{2x^2 - 4}$			
$f(x) = \frac{x^4 + 2x^3 - 6x^2 - 2}{x^3 + 1}$			
$f(x) = \frac{-x^2 + 3x}{2x^2 - 4x - 6}$			
$f(x) = \frac{3x^3 + 2x - 4}{x^2 - 4}$			

Graphs of Some Rational Functions

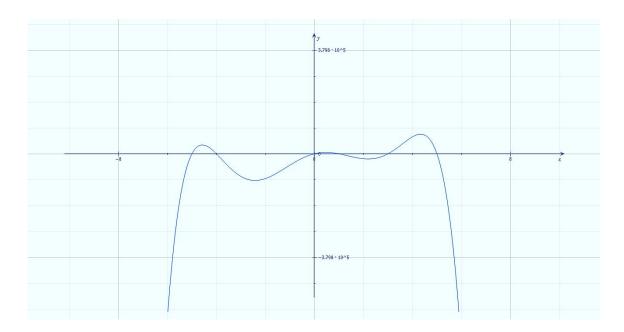
A) Find the domain and range and all asymptotes from the given graphs

1)
$$y = \frac{x^3 - 3x^2 + 2x + 2}{x^2 - 9}$$





4) y = (-2)x(x-1)(2x-10)(3x-9)(2x+8)(3x+15). This is a polynomial function as well; find the degree, leading coefficient, constant term and zeros.



B) Sketch the graphs of the following rational functions.

a)
$$f(x) = \frac{x}{x-2}$$

b) $f(x) = \frac{3x^2+1}{2x^2-4}$

x

c)
$$f(x) = \frac{3x^3 + 2x - 4}{x^2 - 4}$$

d)
$$f(x) = \frac{-x^2 + 3x}{2x^2 - 4x - 6}$$

e)
$$f(x) = \frac{5x}{x^2 - 9}$$

f)
$$f(x) = \frac{x^2 - 16}{x - 4}$$

Homework Practice Problems Exercises 4.1.1: Page 314 #1 – 21 (odd numbers),

OER West Texas A&M	Tutorial 40:	Graphs of Rational Functions
	Tutorial 41:	Practice Test on Tutorials 34 - 40

Examples YouTube videos

- Asymptotes of rational functions: https://www.youtube.com/watch?v=2N62v_63SBo
- Finding vertical and horizontal asymptotes: <u>https://www.youtube.com/watch?v=P0ZgqB44Do4</u>
- Rational functions graphs 1: https://www.youtube.com/watch?v=ReEMqdZEEX0
- Graphs of rational functions 2: https://www.youtube.com/watch?v=p7ycTWq6BFk